
Last N: Relevance-Based Selectivity for Forwarding Video
in Multimedia Conferences

Boris Grozev
Jitsi.org

boris@jitsi.org

Lyubomir Marinov
Jitsi.org

lyubo@jitsi.org

Varun Singh
Aalto University, Finland
varun.singh@aalto.fi

Emil Ivov
Jitsi.org

emcho@jitsi.org

ABSTRACT
Multiparty conferencing has traditionally been a relatively expen-
sive application that was only used in enterprise scenarios. Re-
cently, however, the landscape has started to shift in ways that could
change this. Ever-increasing bandwidth and processing capabilities
make it possible for mobile endpoints and laptop computers to eas-
ily handle multiple incoming media streams (both audio and video).
The development of Web Real-Time Communications (WebRTC)
has also significantly simplified the development of video confer-
encing applications and made them mainstream. Both of these chan-
ges provide a way of replacing expensive video mixers (that pro-
duce composited videos) with light-weight video routers (that se-
lectively forward streams). In this paper, we describe a Multipoint
Control Unit (MCU) that identifies and selects the last N domi-
nant speakers and forwards their streams to all the conference par-
ticipants. We evaluate the performance of this Selective Forward-
ing Unit (SFU) against a simplistic everyone-to-everyone (full-star)
MCU. Our results show that the SFU uses 45% less CPU and 63%
less bandwidth when forwarding media for 10 of the endpoints in a
30-participant conference.

Categories and Subject Descriptors: H.4.3 [Communications
Applications] Computer conferencing, teleconferencing, and video-
conferencing.

General Terms: Algorithms, Design, Experimentation, Perfor-
mance

Keywords: Videoconferencing, WebRTC, RTP, SFU, MCU,
LastN

1. INTRODUCTION
Deployments of WebRTC have proliferated peer-to-peer video

communication. Currently, multiparty conferencing is achieved via
different topologies. One approach is to use full-mesh connectivity,
wherein each endpoint sends media to every other, thus the end-
points quickly exhaust their available upstream bandwidth. Further,
the congestion control for each media stream pair is maintained
separately, hence, sending media from the same source to several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
NOSSDAV’15, March 18-20 2015, Portland, OR, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3352-8/15/03 ...$15.00
http://dx.doi.org/10.1145/2736084.2736094.

endpoints competes for available capacity, which effectively pro-
duces inconsistent quality at each recipient [17].

Another approach is to use a centralized architecture. Tradition-
ally such systems use Multipoint Control Units (MCUs) as the cen-
tral component; they perform some form of signal processing on
the media streams that they receive from each endpoint. MCUs
usually mix audio and spatially combine video, which requires sub-
stantial computational resources. Contrarily, Selective Forwarding
Units (SFUs) forward RTP packets, optionally changing their head-
ers, but without processing the payload [22]. They do not need to
decode or encode any media and this makes them generally more
CPU-efficient. In order to be bandwidth efficient as well, SFUs do
not forward all packets, but use a selection algorithm to decide
which packets to forward to which endpoints. This algorithm is
critical for the application, because the network and CPU usage
as well as the user experience depend on it.

In this paper we propose a novel approach for endpoint selection.
We introduce a general scheme, Last N, which orders endpoints ac-
cording to their audio activity. We use an algorithm for dominant
speaker identification adapted to work solely with audio-level in-
formation and which operates without decoding the audio streams.
This allows the Last N scheme to be used in the context of an SFU.
We implement our proposal in an open-source SFU and evaluate it
in terms of the CPU and network capacity used by the SFU. Our
results show significant improvements, especially in cases where a
single conference has a large number of participants.

We structure the remainder of this paper as follows: Section 2 de-
scribes the implementation of the video conferencing system. Sec-
tions 3 and 4 give the specifics of the algorithms used for keeping
track of the “dominant” speaker in the conference, and for select-
ing which video streams to forward. Section 5 describes the exper-
iments which we performed in order to evaluate the new system,
and presents the results.

2. JITSI VIDEOBRIDGE: AN SFU
In this section we describe the architecture and features imple-

mented in a Selective Forwarding Unit (SFU).
General overview: Jitsi Videobridge is an SFU implementation,

mainly targeted at serving multi-party conferences with WebRTC-
enabled endpoints. Presently it is deployed in conjunction with Jitsi
Meet – a JavaScript WebRTC application, which provides real-time
multi-party audio and video conferencing. The use-cases range from
casual personal meetings to business meetings with shared remote
presentations. It is our endevour to increase the number of partici-
pants which can be supported in a typical conference by enhancing
the functionalities provided by SFUs.

Jitsi Videobridge uses XMPP/Jingle [8] for signalling, with one
of the endpoints acting as conference focus [14] and initiating a

Jingle session with each other endpoint. The focus allocates chan-
nels/resources to each participant and additionally controls the SFU
through the COnferences with LIghtweight BRIdging (COLIBRI)
protocol [5]. In addition to Jitsi Meet instances running in WebRTC-
capable browsers, Jitsi Videobridge is capable of interacting with
other full-fledged client software, gateways to legacy networks (e.g.
using SIP), and provides enhanced server-side services (e.g. record-
ing the participants in a conference). Figure 1 shows the structure
of a typical conference.

Besides establishing channels for audio and video, each endpoint
also maintains a control channel to the SFU. This is a bi-directional
reliable transport channel (based on WebRTC’s data channels), which
can be used for notification and/or control messages in cases where
RTCP cannot be used (the WebRTC API does not provide a mecha-
nism to the JavaScript application to directly send or receive RTCP
messages). The messages themselves have a custom ad-hoc for-
mat based on JSON. Relevant to the experiments in this paper are
the “dominant speaker” notifications, which the SFU sends to end-
points to indicate that the main speaker in the conference has chan-
ged, and the “start” and “stop” messages which the SFU sends in
order to instruct an endpoint to start or stop its video stream (See
section 3 for details).

The system is in production use and there are several indepen-
dent deployments making use of it; both Jitsi Videobridge1 and Jitsi
Meet2 are open-source software.

RTCP Termination: The SFU supports two modes of handling
RTCP. In the first mode (no termination) it just forwards all RTCP
packets to every endpoint, and does not generate any new packets.

In the second mode, the SFU terminates RTCP and generates
RTCP packets for the RTP session. Incoming RTCP packets are
handled according to their type. The SFU does not propagate Re-
ceiver Reports (RRs), and instead it generates RRs for each incom-
ing RTP stream. It propagates Sender Reports (SRs) to all end-
points. The SFU typically passes through other types of RTCP Re-
ports, for example, RTCP Extended Reports, Negative Acknowl-
edgements (NACKs), and Picture Loss Indications (PLIs). The Re-
ceiver Estimated Maximum Bandwidth (REMB) RTCP report [1]
is used for performing congestion control [9]: i.e., the receiver es-
timates the available capacity based on variation in frame inter-
arrival times. With multiparty conferencing, where there are several
receivers, REMB reports will be generated by each receiver, and it
is up to the SFU to either forward them to the sender or not. Passing
through the REMB causes the sender to perform congestion control
each time, leading to control or rate instability [17]. Therefore, Jitsi
Videobridge does not propagate the received REMB packets and
instead generates REMB reports for each sender, using the same
congestion control algorithm as the endpoints [9].

RTP Header: The SFU changes two parts of the RTP header. 1)
the payload type (PT); while the endpoints use the same codec pro-
files, it is possible for them to use different payload type (PT) num-
bers to indicate the same codec; 2) the abs-send-time RTP header
extension [1] in case of video where it replaces the 24-bit time-
stamp in each outgoing RTP packet with a locally generated time-
stamp. This corrects the receiver’s packet inter-arrival time calcula-
tion, so that only the path from the SFU to the endpoint is taken into
account (but not the path from the sending endpoint to the SFU).

Security: There are several ways to address media security (en-
cryption and signing) in an SFU-based media conference. Although
the SFU does not change the payload of RTP packets in any way, it
needs to change the RTP headers and generate RTCP packets. For

1https://github.com/jitsi/jitsi-videobridge/
2https://github.com/jitsi/jitsi-meet/

Figure 1: The media connections between endopints and the server
component in a full-star conference with forwarded streams.

this reason, it is not currently possible for the endpoints to exchange
end-to-end encrypted media without the SFU being able to decrypt
it. WebRTC mandates that all media is transported over Secure
Real-time Transport Protocol (SRTP), with session keys exchanged
over Datagram Transport Layer Security (DTLS) [13]. This forces
the SFU to establish a separate SRTP context with each endpoint,
and consequently to re-encrypt every RT(C)P packet individually.

A different scheme which has been discussed for use with SFUs
is Encrypted Key Transport (EKT) [10]. With EKT all endpoints
and the SFU share a single SRTP context, hence, the SFU is not
required to re-encrypt RTP packets (unless the headers were mod-
ified). Consequently, the proposals discussed in this paper can be
applied without any modifications.

In the following sections we discuss our proposals for endpoint
selection based on speaker order, and for identifying the dominant
speaker(s) based on audio-level information.

3. LAST N: ENDPOINT SELECTION
BASED ON AUDIO ACTIVITY

Media conferences deployed in a full-star topology do not scale
well when the number of participants is substantial (≈ 50), and
each endpoint connected to the conferencing server sends and re-
ceives streams from each other endpoint. At the endpoint we iden-
tified the following issues: 1) The user interface cannot display a
large number of video streams in an efficient manner, because there
is insufficient screen real-estate. 2) The required resources (CPU,
network capacity) grow in proportion to the number of participants,
since the endpoint has to decode, scale, and render all streams sepa-
rately. At the conferencing server the issue is with the requirements
for CPU and network capacity, which grow quadratically with the
number of endpoints. Our evaluation in section 5 shows that either
of these can be the bottleneck, depending on the hardware and the
available network resources.

Here we propose Last N: a general scheme that defines a pol-
icy for endpoint selection based on audio activity. It is used by a
Selective Forwarding Unit (SFU) [22] to choose only a subset of

the streams to forward at any one time, alleviating the identified
limitations for the endpoints and conferencing server.

Last N: The SFU only forwards a fixed number of video streams
(N) to each endpoint, and changes the set of forwarded streams dy-
namically according to audio activity. Additionally, the receiving
endpoint will continue receiving streams that may have been cho-
sen by the participant but are currently outside of the Last N set.
The Last N scheme only applies to forwarding video streams and
not to audio; audio from all endpoints is always forwarded.

The integer N is a constant, configured for the whole conference
and we denote the total number of endpoints in a conference as K.
Then the SFU sends K×N video streams, instead of the K×(K−
1) streams sent in the case of a full-star topology. This allows the
SFU to scale down the requirements on the network capacity and
CPU, and be capable of handling a larger number of conferences
compared to the full-star topology.

From a user experience perspective, video from only a subset of
all endpoints is displayed, but as soon as a participant of the con-
ference starts to speak, their video is displayed automatically. In
order to implement this scheme, the SFU relies heavily on identify-
ing the dominant speaker (details discussed in section 4). The SFU
maintains a list (L) with all endpoints currently in the conference,
ordered by the last time that an endpoint was identified as the domi-
nant speaker; thus the endpoint currently identified as the dominant
speaker is always at the top of the list.

Suppose that an endpoint E has selected a set P of endpoints that
it wants to permanently receive (P could be empty). Then the SFU
forwards to E the selected endpoints and the first of the remaining
endpoints, up to a total of at most N endpoints. That is, E receives
P and the first (at most) N−|P | endpoints from the list L\P \{E}.

Pausing video streams: When a stream from an endpoint is not
forwarded by the SFU to any other participant, it is unnecessary for
the endpoint to send the stream to the SFU, which is effectively ig-
noring it. The SFU sends control messages to endpoints instructing
them to temporarily pause, or to resume transmitting their video
stream. These messages can be sent over the control channel, or
encoded as an RTCP extension report.

This approach can be used with any algorithm the SFU might
use to change its forwarding policy, as long as the SFU keeps track
of whether a stream is being forwarded to at least one endpoint
or not. With Last N and no selected endpoints, it is easy to see
which streams are being forwarded3, because they are listed in the
order they last spoke (L). All streams in L after stream N + 1 are
not forwarded and can be paused. Hence, there are always K −
N − 1 streams paused. The performance evaluation and results are
discussed in section 5.

Key-frames: When a paused stream is resumed, the endpoints in
order to start decoding a stream require a key-frame (an I-frame).
Typically, when endpoints do not have a valid key-frame, they gen-
erate an RTCP Full-Intra frame Request (FIR) message; senders
generate a key-frame in response to such messages. Instead of wait-
ing for the receivers to generate a FIR request, the SFU preemp-
tively sends a FIR message when it instructs an endpoint to resume
the video stream. Additionally, when an endpoint is elected dom-
inant speaker and was not in the Last N set, its stream starts to be
forwarded to all receivers. This allows for a single FIR message to
be sent after a dominant speaker change, even though there usually
is more than one receiver and it also effectively reduces the time to
correctly decode and render a stream by one RTT (i.e., instead of
waiting for the receivers to send FIRs).

Further Improvements: The Last N scheme proposed here can
3The case with selected streams is also not complicated. We do not
describe it for lack of space.

be easily extended with additional policies, providing more com-
plex solutions suitable for some use-cases, while preserving many
of the features. One example, which might be useful for remote
presentations, is to have a global set of streams which are always
forwarded (which is not the same as the endpoint-selected streams,
which are per-endpoint). This can be implemented simply by re-
ordering L and keeping the desired streams at the top. Another
example would be to allow N to vary per-endpoint, possibly dy-
namically, according to the device and/or network conditions of the
endpoint.

4. DOMINANT SPEAKER
IDENTIFICATION

An important feature for a conferencing system from a user ex-
perience perspective is being able to dynamically switch the focus
to the currently speaking participant of the conference; further as an
optimisation, the receiving endpoint may render not just the current
dominant speaker but also a list of Last N speakers and/or set of se-
lected speakers. SFUs enabling the Last N scheme perform Dom-
inant Speaker Identification (DSI). Traditionally DSI is performed
using raw audio streams [21], but an SFU (e.g., Jitsi Videobridge)
forwards audio streams without decoding. Our algorithm for DSI is
adapted to work with the audio levels indicated by the endpoints in
each RTP packet as a header extension [7].

The desired behavior of a dominant speaker identification algo-
rithm is as follows:
• No false switching should occur during a dominant speech

burst. Both transient noise occurrences and single words that
are said in response to or in agreement with the dominant
speaker are considered transient occurrences. These should
not cause a speaker switch.
• A speaker switch event cannot occur during a break in speech

between two dominant speakers. It has to be triggered by a
beginning of a speech burst.
• A tolerable delay in transition from one speaker to another,

in a speaker switch event, is up to one second.
• When simultaneous speech occurs on more than one channel,

the dominant speaker is the one who began speaking first.
• The relative loudness of the voice of a speaker should not

influence his chance to be identified as the dominant speaker.
A speech burst is defined as a speech event composed of three

sequential phases: initiation, steady state and termination. In the
initiation phase, speech activity builds up. During the steady state,
speech activity is mostly high, but it may include breaks in ac-
tivity due to pauses between speech. Finally, in the termination
phase speech activity declines and then stops. Typically, a domi-
nant speech activity is composed of one or more consequent speech
bursts. The point where a change in dominant speaker occurs is re-
ferred to as a speaker switch event.

The implemented algorithm for dominant speaker identification
uses speech activity information from time intervals of different
lengths. It consists of two stages, a local processing and a global
decision. In the first stage, the audio signal of each participant is
processed independently and speech activity scores are evaluated
for the immediate, medium, and long time-intervals. The lengths of
the time intervals correspond to and allow capturing basic speech
events such as a few phonemes, a word or two, and a short sentence.
In the second stage, the dominant speaker is identified based on the
speech activity scores obtained in the first stage and speaker switch
events are detected. It is assumed that a speaker switch event can be
inferred from a rise in the three speech activity scores on a certain
channel, relative to scores of the dominant channel.

Sequences and combinations of basic speech events may indi-
cate the presence or the absence of dominant speech activity. The
method distinguishes between transient audio occurrences that are
isolated and those that are located within a speech burst.

Long term information is used in order to determine whether
speech is present in a currently observed time-frame since domi-
nant speech activity in a given time-frame would be better inferred
from a preceding time interval than from any instantaneous signal
property.

Local Processing: In this stage, the signal in each channel is pro-
cessed separately with the objective of placing each signal frame
into a broader context than its instantaneous audio activity. This is
accomplished by processing the currently observed frame by itself
in addition to a medium- length preceding time interval and in ad-
dition to a long time interval that precedes it. Thus each time we
move up to a longer time interval, the speech activity obtained in
the previous step is analyzed again in a broader context.

The algorithm relates to each time interval as composed of smaller
sub-units. The speech activity in each time interval is determined
according to the number of active sub-units by attributing a speech
activity score to this number. The score is obtained from the like-
lihood ratio between hypothesis of speech presence and hypothesis
of speech absence. The speech activity evaluation process consists
of three sequential steps, referred to as immediate, medium and
long. The input into each step is a sequence of the number of active
sub-units acquired in the previous step. A thresholding approach
allows measuring the amount of speech activity while suppressing
isolated high-energy noise spikes.

For the step of immediate speech activity evaluation we use the
client-to-mixer audio level indication of the frame [7] rather than a
frequency representation of the frame. This is made possible by the
thresholding as long as the replacement input presents a compar-
atively similar speech activity estimation to the original frequency
sub-band test.

Audio levels are expressed in dBov (with values from −127 to
0), which is the level, in decibels, relative to the overload point of
the system, i.e., the highest-intensity signal. In order to reuse the
heuristically derived parameters of the original algorithm such as
the thresholds, we brake the audio level range into the same number
of sub-bands as the number of frequency sub-bands analyzed by the
original algorithm [21].

Additionally, Jitsi Videobridge accounts for differences in the
relative loudness of the background noise present in the audio sig-
nal of a participant. We apply a separate, individual initial thresh-
olding of the input based on a history of the minimum audio level
indication reported by the participant. The history maintains the
minimum by considering its recency for the purposes of reflect-
ing medium- and long-term changes in the level of the background
noise.

Global Decision: The objective of this stage is to identify the
dominant speaker. This stage is activated in time steps of a cer-
tain interval, which is referred to as the decision-interval. It utilizes
the scores that are obtained in the local processing stage for dom-
inant speaker identification. The approach in this stage is detect-
ing speaker switch events, rather than selecting a dominant speaker
in every decision-interval. Once a dominant speaker is identified,
he remains dominant until the speech activity on one of the other
channels justifies a speaker switch.The non-dominant channels are
referred to as competing (for dominance).

5. PERFORMANCE EVALUATION
This section describes the testing environment, the experimental

setup the and results from all performed tests.

5.1 Testbed
The SFU is running on a machine with a quad-core Intel Xeon E5-

1620 v2 @ 3.70 GHz processor. All tests comprise of a single con-
ference with a varying number of participants. One endpoint in the
conference is a Chrome instance running Jitsi Meet, with the micro-
phone and camera disabled. The rest of the endpoints come from a
Jitsi Hammer instance. This is an application developed specifically
for load-testing the SFU. It creates multiple endpoints, each stream-
ing one audio and one video stream from pre-recorded files. The
two streams have a combined average bitrate of about 515 Kbps.
These endpoints do not implement any congestion control mech-
anism and their RTCP support is limited. They only emit Sender
Reports and do not react to REMB, NACK, or FIR messages. The
streamed video includes keyframes every 1.3 seconds on average,
which allows decoders to relatively quickly regain decoding state,
thus the state of the conference can be monitored without the need
to handle FIR or NACK requests.

In order to trigger changes to the dominant speaker in the con-
ference, the participating endpoints (from Jitsi Hammer) add audio-
levels in the format used by the DSI algorithm [7]. At any point in
time one endpoint sends levels associated with the human speech,
while the others send silence. The endpoint which sends speech
levels changes every 4 seconds, with the new one being chosen ran-
domly. Note that we change only the audio-level field and not the
RTP payload of the audio streams. The “start” and “stop” messages
are implemented with RTCP packets.

We denote the number of load-generating endpoints K, so, in-
cluding the Chrome instance, there are always K + 1 endpoints in
the conference. We denote the Last N value N , so each endpoint
receives (at most) N video streams. With N = −1 we denote that
Last N is not used, and all streams are forwarded to everyone. The
number of video streams sent by the SFU is either (K + 1) × N
(SFU), or (K +1)× (K − 1) (full-star, N = −1). The number of
streams received is either K or N+1, depending on whether video
pausing is used.

All data is gathered in intervals of one second. On all graphs,
the values are means over an interval of at least 120 seconds, and
the error bars indicate the standard deviation of the sample. The
measured CPU usage constitutes the fraction of the last 1-second
interval which the CPU spent in either User, Nice, System or
IOWait state (what the top command shows on the “CPU(s)”
line), and 100% would indicate that all 8 logical cores were in use.

5.2 CPU usage in a full-star conference
In this test we measured the CPU and bandwidth used in a con-

ference with a full-star topology (N = −1). We varied the num-
ber of endpoints K (10, 15, 20, 25, 29, and 33). Figure 2 shows
the variation in CPU usage compared to the aggregate bitrate. We
observe linear growth, which is to be expected because the most
computationally intensive part of the SFU’s operation is encryp-
tion and decryption. Based on these values, we conclude that in
reasonable practical scenarios both the computing and the network
resources might constitute a bottleneck. An average machine can
serve a 100 Mbps link, while a less powerful machine might not be
able to cope with 1 Gbps of bitrate. Assuming that about 500 Kbps
is a typical bitrate for a video stream in a conference, we observe
that, as expected, the required resources increase rapidly: a confer-
ence with 33 participants requires on the order of 500 Mbps capa-
city for the SFU.

5.3 Full-star vs Last N
In this test we measured the output bitrate of the SFU with K =

10, 15, 20, 25, 30, with four configurations: full-star, and Last N with

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600
 0

 5

 10

 15

 20

 25
C

PU
 u

sa
ge

 (
%

)

Bitrate (Mbps)

(47.6Mbps, 3.1%)

(110.3Mbps, 5.1%)

(199.4Mbps, 8.0%)

(314.7Mbps, 11.7%)

(425.5Mbps, 15.7%)

(550.4Mbps, 20.3%)

Figure 2: The CPU usage for different aggregate throughputs in a
full-star conference. The CPU usage is mainly contributed by the
decrypting and re-encrypting of the RTP packets. The error bars
represent the standard deviation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 10 15 20 25 30
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

M
bp

s
ou

tb
ou

nd

Number of endpoints (K)

n=3
n=5
n=8

n=-1

Figure 3: The outbound bitrate at the SFU, as the number of end-
points grows. Shown are four Last N configurations. The error bars
represent the standard deviation.

N = 3, 5, 8. Video pausing was enabled. Figure 3 shows that when
Last N is used, the bitrate grows linearly with K, with a coefficient
that depends on N , while with no Last N it grows quadratically.
This constitutes a significant improvement when Last N is used.
For K = 30, the gain is 72%, 82%, and 89% for N 8, 5, and 3,
respectively. Counting the aggregate bitrate the gain is almost the
same: 72%, 82%, and 88%. We also see that different compromises
between bitrate and number of visible videos can be achieved by
simply varying the value of N .

5.4 Video Pausing
In this test we observed the differences in the total bitrate and

CPU usage between the two modes of Last N: with video pausing
on and off. We fixed K = 30 and changed N to 25, 20, 15, 10, 8,
5, 3, 2, 1. The graphs also show values for N = 30; for them Last
N is disabled. We plot them as N = 30, because it is effectively the
same (i.e., in both cases everything is being forwarded). Figure 4
shows variation in the bitrate, and figure 5 shows the variation in
CPU usage. We observe that for high values of N there is little or
no gain, but it increases when N is lower. This is expected because
1) the total bitrate is lower and 2) there are more endpoints with

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

B
itr

at
e

(M
bp

s)

Last N

video not paused
video paused

Figure 4: The aggregate bitrate at the SFU for a fixed number
of endpoints (30) and varying value of N . Compared are the two
modes of Last N: with and without video pausing.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14

 0 5 10 15 20 25 30
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14

C
PU

 u
sa

ge
 (

%
)

Last N

video not paused
video paused

Figure 5: The CPU usage at the SFU for a fixed number of end-
points (30) and varying value of N . Compared are the two modes
of Last N: with and without video pausing.

paused video. When N is set to 8,4 we see an 8% decrease in bitrate
and a 16% decrease in CPU usage. We expect that pausing video
streams will be beneficial in practice, because it has the additional
advantage of decreasing CPU usage for the endpoints with paused
video by eliminating the need to encode video.

6. RELATED WORK
The Real-time Transport Protocol (RTP) [16] is designed to trans-

fer multimedia data and is favoured over TCP due to the low-latency
requirements [3]. Many congestion control algorithms have been
proposed for peer-to-peer conversational real-time video, which at-
tempt to match the media rate to the available end-to-end path ca-
pacity. These algorithms [18, 15, 19, 20, 11, 9, 12, 23, 6] rely on
the congestion indicators reported in the RTCP Receiver Reports
from the remote endpoint.

Systems providing multi-party call services typically structure
the participating endpoints in a mesh or a star topology. In a full-
mesh topology media from each endpoint is sent to every other end-
point. Currently the congestion control for each media stream pair

4We assume this to be a reasonable value for practical use, because
of user interface considerations.

is maintained separately, hence, pairs with the same source compete
with each other for available capacity, which effectively produces
inconsistent quality at each recipient [17]. If the endpoints are able
to detect shared bottlenecks between each pair of participants and
merge the congestion control of those streams [4] it would be pos-
sible to fairly share the capacity. However, this would still require
separately encoding the same media streams for each endpoint.

There are two types of server components often used in central-
ized architectures. Selective Forwarding Units (SFUs) route RTP
packets without changing their payload [22], and without the need
to introduce any delay at the application level5. Contrarily, tradi-
tional Multipoint Control Units (MCUs) process the payload in a
way which requires decoding. This adds an inherent delay caused
by synchronization of de-jitter buffers [2].

7. CONCLUSION AND FUTURE WORK
In this paper we propose a scheme (Last N) which an SFU uses

to select which video streams to forward and which to drop. We
present an implementation and evaluate it in terms of the used net-
work and computing resources. We examine the effects of varying
the number of forwarded video streams (N), and the possibility to
temporarily turn-off unused streams. Our results show that the ex-
pected performance gains are achievable in practice. Notably, we
observe a drop from a quadratic to a linear (with respect to the total
number of endpoints) growth of the outbound bitrate used by the
SFU. Additionally, for a fixed number of endpoints, tweaking the
values of N results in gradual changes to the bitrate, making the
system adaptable to different situations. Based on the results, we
expect that Last N will be useful in practice in two scenarios: al-
lowing for small-to-medium conferences to work more efficiently
(thus allowing a single server to handle more conferences), and in-
creasing the maximum number of endpoints in a conference, given
the same resources.

Last N is quite general and allows for different modifications and
improvements on top of it. In particular, one interesting modifica-
tion, which we intend to study, is maintaining different values of N
for each receiver, while keeping the list L global for the conference.
This would allow a receiver’s N to change dynamically according
to the network conditions, the current bitrate of other endpoints’
streams, and possibly other metrics.

8. REFERENCES
[1] H. Alvestrand. RTCP message for Receiver Estimated

Maximum Bitrate, October 2013. IETF Internet Draft.
[2] Peter Amon, Madhurani Sapre, and Andreas Hutter.

Compressed domain stitching of hevc streams for video
conferencing applications. In Packet Video Workshop (PV),
2012 19th International, pages 36–40. IEEE, 2012.

[3] Eli Brosh, Salman Abdul Baset, Dan Rubenstein, and
Henning Schulzrinne. The Delay-Friendliness of TCP. In
Proc. of ACM SIGMETRICS, 2008.

[4] Safiqul Islam, Michael Welzl, Stein Gjessing, and Naeem
Khademi. Coupled congestion control for rtp media. In
Proceedings of the 2014 ACM SIGCOMM Workshop on
Capacity Sharing Workshop, CSWS ’14. ACM, 2014.

[5] Emil Ivov, Lyubomir Marinov, and Philipp Hancke.
COnferences with LIghtweight BRIdging (COLIBRI),
XMPP Standards Foundation XEP-0340, January 2014.

5Note that SFUs may still store RTP packets in buffers, sometimes
referred to as (de-)jitter buffers, for other reasons (for example in
order to respond to retransmission requests). In these cases the de-
jitter buffers do not introduce any additional delay.

[6] Ingemar Johansson. Self-clocked rate adaptation for
conversational video in lte. In Proceedings of the 2014 ACM
SIGCOMM Workshop on Capacity Sharing Workshop,
CSWS ’14. ACM, 2014.

[7] J. Lennox, E. Ivov, and E. Marocco. A Real-time Transport
Protocol (RTP) Header Extension for Client-to-Mixer Audio
Level Indication, IETF RFC 6464, December 2011.

[8] Scott Ludwig, Joe Beda, Peter Saint-Andre, Robert
McQueen, Sean Egan, and Joe Hildebrand. Jingle, XMPP
Standards Foundation XEP-0166, December 2009.

[9] H Lundin, S Holmer, H Alvestrand, L De Cicco, and
S Mascolo. A Google Congestion Control Algorithm for
Real-Time Communication on the World Wide Web, 2014.
IETF Internet Draft.

[10] J. Mattsson, D. McGrew, D. Wing, and F. Andreasen.
Encrypted Key Transport for Secure RTP, October 2014.
IETF Internet Draft.

[11] Marcin Nagy, Varun Singh, Jörg Ott, and Lars Eggert.
Congestion control using fec for conversational multimedia
communication. In Proceedings of the 5th ACM Multimedia
Systems Conference, MMSys ’14, pages 191–202. ACM,
2014.

[12] Piers O’Hanlon and Ken Carlberg. Dflow: Low latency
congestion control. In Proceedings of the 2013 IEEE ICNP
Workshop on Capacity Sharing Workshop, CSWS ’13. IEEE,
2013.

[13] E. Rescorla. WebRTC Security Architecture, July 2014.
IETF Internet Draft.

[14] J. Rosenberg, H. Schulzrinne, and O. Levin. A Session
Initiation Protocol (SIP) Event Package for Conference
State, August 2006. RFC 4575.

[15] A. Saurin. Congestion Control for Video-conferencing
Applications. Master’s thesis, University of Glasgow,
December 2006.

[16] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson.
RTP: A Transport Protocol for Real-Time Applications,
IETF RFC 3550, July 2003.

[17] Varun Singh, Albert Abello Lozano, and Jörg Ott.
Performance analysis of receive-side real-time congestion
control for webrtc. In Proc. of IEEE Workshop on Packet
Video, PV ’13, 2013.

[18] Varun Singh, Stephen McQuistin, Martin Ellis, and Colin
Perkins. Circuit breakers for multimedia congestion control.
In Packet Video Workshop (PV), 2013 20th International,
pages 1–8. IEEE, 2013.

[19] Varun Singh, Joerg Ott, and Igor Curcio. Rate adaptation for
conversational 3G video. In Proc. of INFOCOM Workshop,
Rio de Janeiro, BR, 2009.

[20] Varun Singh, Joerg Ott, and Igor Curcio. Rate-control for
Conversational Video Communication in Heterogeneous
Networks. In in Proc. of IEEE WoWMoM Workshop, SFO,
CA, USA, 2012.

[21] Ilana Volfin and Israel Cohen. Dominant speaker
identification for multipoint videoconferencing. Computer
Speech Language, 27(4):895 – 910, 2013.

[22] M. Westerlund and S. Wenger. RTP Topologies, November
2014. IETF Internet Draft.

[23] X. Zhu and R. Pan. NADA: A Unified Congestion Control
Scheme for Low-Latency Live Video. In Proc. of IEEE
Workshop on Packet Video, PV ’13, 2013.

